

Understanding Unit Rate

Name: _____

Solve each problem.

- 1) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonade that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?
- 2) A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- 3) A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 4) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of a large box. How long would it take him to fill the whole box?
- 5) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 6) Lana spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- 7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- 8) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 9) An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- 10) While exercising John walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?

Answers

1. _____
2. _____
3. _____
4. _____
5. _____
6. _____
7. _____
8. _____
9. _____
10. _____

Understanding Unit Rate

Name: **Answer Key**

Solve each problem.

- 1) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonade that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?
- 2) A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- 3) A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 4) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of a large box. How long would it take him to fill the whole box?
- 5) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 6) Lana spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- 7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- 8) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 9) An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- 10) While exercising John walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?

Answers

1. **3 baskets**
2. **$1\frac{1}{2}$ boxes**
3. **3 bags**
4. **$1\frac{1}{2}$ hours**
5. **3 containers**
6. **$1\frac{1}{2}$ hours**
7. **3 bags**
8. **$1\frac{1}{2}$ hours**
9. **3 potatoes**
10. **$1\frac{1}{2}$ miles**